달력

10

« 2024/10 »

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
2018. 12. 11. 22:17

AR(2)모델의 condition 유도하기 공부/통계학2018. 12. 11. 22:17

출처 : https://stats.stackexchange.com/questions/118019/a-proof-for-the-stationarity-of-an-ar2


phi1 <- seq(from = -2.5, to = 2.5, length = 51) 
plot(phi1,1+phi1,lty="dashed",type="l",xlab="",ylab="",cex.axis=.8,ylim=c(-1.5,1.5))
abline(a = -1, b = 0, lty="dashed")
abline(a = 1, b = -1, lty="dashed")
title(ylab=expression(phi[2]),xlab=expression(phi[1]),cex.lab=.8)
polygon(x = phi1[6:46], y = 1-abs(phi1[6:46]), col="gray")
lines(phi1,-phi1^2/4)
text(0,-.5,expression(phi[2]<phi[1]^2/4),cex=.7)
text(1.2,.5,expression(phi[2]>1-phi[1]),cex=.7)
text(-1.75,.5,expression(phi[2]>1+phi[1]),cex=.7)



Consider the equation

λ2ϕ1λϕ2=0

If z is a root of the "standard" characteristic equation 1ϕ1zϕ2z2=0 and setting z1=λ, the display obtains from rewriting the standard one as follows:

1ϕ1zϕ2z2=0z2ϕ1z1ϕ2=0λ2ϕ1λϕ2=0

Hence, an alternative condition for stability of an AR(2) is that all roots of the first display are insidethe unit circle, |z|>1|λ|=|z1|<1.

We use this representation to derive the stationarity triangle of an AR(2) process, that is that an AR(2) is stable if the following three conditions are met:

  1. ϕ2<1+ϕ1
  2. ϕ2<1ϕ1
  3. ϕ2>1

Recall that you can write the roots of the first display (if real) as

λ1,2=ϕ1±ϕ12+4ϕ22

to find the first two conditions.Consider the equation

λ2ϕ1λϕ2=0

If z is a root of the "standard" characteristic equation 1ϕ1zϕ2z2=0 and setting z1=λ, the display obtains from rewriting the standard one as follows:

1ϕ1zϕ2z2=0z2ϕ1z1ϕ2=0λ2ϕ1λϕ2=0
Hence, an alternative condition for stability of an AR(2) is that all roots of the first display are insidethe unit circle, |z|>1|λ|=|z1|<1.

We use this representation to derive the stationarity triangle of an AR(2) process, that is that an AR(2) is stable if the following three conditions are met:

  1. ϕ2<1+ϕ1
  2. ϕ2<1ϕ1
  3. ϕ2>1

Recall that you can write the roots of the first display (if real) as

λ1,2=ϕ1±ϕ12+4ϕ22
to find the first two conditions.

Then, the AR(2) is stationary iff |λ|<1, hence (if the λi are real):

1<ϕ1±ϕ12+4ϕ22<12<ϕ1±ϕ12+4ϕ2<2
The larger of the two λi is bounded by ϕ1+ϕ12+4ϕ2<2, or:
ϕ1+ϕ12+4ϕ2<2ϕ12+4ϕ2<2ϕ1ϕ12+4ϕ2<(2ϕ1)2ϕ12+4ϕ2<44ϕ1+ϕ12ϕ2<1ϕ1
Analogously, we find that ϕ2<1+ϕ1.

If λi is complex, then ϕ12<4ϕ2 and so

λ1,2=ϕ1/2±iϕ12+4ϕ2/2.
The squared modulus of a complex number is the square of the real plus the square of the imaginary part. Hence,
λ2=(ϕ1/2)2(ϕ12+4ϕ2/2)2=ϕ12/4(ϕ12+4ϕ2)/4=ϕ2.
This is stable if |λ|<1, hence if ϕ2<1 or ϕ2>1, as was to be shown. (The restriction ϕ2<1 resulting from ϕ22<1 is redundant in view of ϕ2<1+ϕ1 and ϕ2<1ϕ1.)

Plotting the stationarity triangle, also indicating the line that separates complex from real roots, we get

 

'공부 > 통계학' 카테고리의 다른 글

AR(2) stationary condition  (0) 2019.01.14
sqlyog 에러메시지 access denied for user  (0) 2018.12.28
no matches hat  (0) 2018.09.17
fpp2 backcasting  (0) 2018.09.10
7.4  (0) 2018.05.30
:
Posted by 시스메